Texture classification using local discriminative features and Fisher encoding

نویسندگان

  • Rakesh Mehta
  • Karen Egiazarian
چکیده

In this paper we introduce a new image representation for texture classification. Our work is motivated by recent developments in the field of local patch based features, compressive sensing and descriptor encoding methods. Novel features called Compressed Random Pixel Difference (CRPD) are proposed. These features are low in dimensionality, highly discriminative, and easy to compute. Combined with an efficient encoding method, an expressive and robust image descriptor is obtained. Experiments conducted on widely used texture datasets (KTH-TIPS-2a and Brodatz) demonstrate an efficiency of the proposed approach. On KTH-TIPS-2a dataset we have achieved the highest recognition accuracy (to the best of our knowledge) and on Brodatz dataset achieved performance is comparable to the state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing Image Scene Classification Using Multi-Scale Completed Local Binary Patterns and Fisher Vectors

An effective remote sensing image scene classification approach using patch-based multi-scale completed local binary pattern (MS-CLBP) features and a Fisher vector (FV) is proposed. The approach extracts a set of local patch descriptors by partitioning an image and its multi-scale versions into dense patches and using the CLBP descriptor to characterize local rotation invariant texture informat...

متن کامل

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

Descriptor Learning Based on Fisher Separation Criterion for Texture Classification

This paper proposes a novel method to deal with the representation issue in texture classification. A learning framework of image descriptor is designed based on the Fisher separation criteria (FSC) to learn most reliable and robust dominant pattern types considering intraclass similarity and inter-class distance. Image structures are thus be described by a new FSC-based learning (FBL) encoding...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

A Discriminative Framework for Texture and Object Recognition Using Local Image Features

This chapter presents an approach for texture and object recognition that uses scaleor affine-invariant local image features in combination with a discriminative classifier. Textures are represented using a visual dictionary found by quantizing appearance-based descriptors of local features. Object classes are represented using a dictionary of composite semi-local parts, or groups of nearby fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013